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Abstract

The main result of this paper is the derivation of a new expression for the tracer

subgrid term in level coordinates S_ to be employed in O-GCM. The novel feature is the

proper account of the random nature of the density field which strongly affects the

transformation from isopycnal to level coordinates of the variables of interest, velocity and

tracer fields, their correlation functions and ultimately the subgrid terms. Such an effect

was neglected in previous work. In deriving our result we made use of measured properties

of vertical ocean turbulence (Gargett et al. 1981). The major new results are:

1) the new subgrid expression is different from that of the heuristic GM model,

2) u++(tracer)=½u+(thickness), where u ++ and u + are the tracer and thickness bolus

velocities. In previous models, u++=u +,

2) the subgrid for a tracer r is not the same as that for the density p even when one

accounts for the obvious absence of a diffusion term in the latter. The difference stems from

a new treatment of the stochastic nature of the density,

3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's

from the bottom of the ocean to the level z.



I. Introduction

It has long been suggested (Montgomery, 1940) that mixing in the ocean's stably

stratified regions occurs preferentially along surfaces of constant densities, isopycnals,

rather than along isopotential surfaces. More recently, Lozier wet al. (1994) have shown

that averaging temperature and salinity over pressure surfaces may give rise to water

masses that do not exist in the real ocean. As discussed in the previous paper (IV), the

general procedure is thus to construct mesos_ale subgrid terms in isopycnal coordinates and

then transform them to level coordinates. The problem is far from simple because of the

random nature of the relation between the density p and the coordinate z. Previous work did

not fully account for this feature: de Szoeke and Bennett (1992) recognize that "the

equations of motion, continuity, thermodynamics and scalar conservations averaged

macroscopically on isopycnals and expressed in level coordinates are not the same as the

conventional equations Reynolds-averaged at fixed depth", but ultimately they argued

that in practical applications such a difference is unimportant since p' may be considered a

small parameter. We reach the opposite conclusion. We show that the first term O(p')

must also be taken into account since the neglect of this feature leads to some poorly

defined effective density p(z). For future reference, we shall call it "effective p(z)

approximation". The goal of this paper is to take proper account of the random nature of

the function p(z). The resulting subgrid is different from that of previous work.

The paper is organized as follows: in sec.II, we study the relations between the mean

and the fluctuating components of the two fields p(z) and z(p) that follow from the random

nature of p(z). In sec.III, we obtain the expressions for the mean and fluctuating

components for the velocity and tracer fields in level coordinates in terms of the same fields

in isopycnal coordinates. In sec.IV, we consider the effect of the random nature of p(z) on

the subgrid for tracers in level coordinates and obtain a model independent expression for

the tracer subgrid term in level coordinates S / in terms of two functions which must be

modeled in isopycnal coordinates and which we discuss in sec.V. In sec.VI, we present the



final result for Sg to be used in O-GCM. In sec. VII we present St as the sum of

diffusion+advection terms which differs considerably from previous expressions. In sec.VIIl

we discuss the difference between our expressions for the bolus velocities for tracer and

densities in both coordinates with those of previous authors.

II. Relations between the random fields p(z) and z(p).

Consider the two fields p(x,y,z,t) and z(x,y,p,t_ which we split in two parts

representing the average and the fluctuating components,

p(z) = p(z) + p'(z) (la)

z(p)= z(p)+ z'(p) (Ib)

For sake of simplicity,we shallomit the x,y dependence. For arbitraryz and p, we have the

exact relations

p=p[z(p)], z=z[p(z)] (2)

Further, we assume that the fluctuatingcomponents p'(z)and z'(p)are sufficientlysmall to

expansion. Using (3a,b) we then have (the subscripts denote partialallow a power

derivatives)

p(z) = p(_+z')= p(_) + pz(_)z'+ ½pzz(_)z'2+... (3a)

pz(_) = -_lz= i (3b)

Averaging, subtracting from the original equation and keeping terms up to O(z'2), we

obtain:

p=_(_)+ _ (4)

where

and

= p,z(_)z,+ ;_zz(Z)_,2 (5)

p'(D+ >z(_)z'(p)+ _p'=0

_p'=A[p'z(_)z']+ _>zz(_)_[z'2]

(6a)

(6b)
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where we have defined

A(xy) = xy - x---y

and in Eqs.(4-6) we have used the shorthand notation

z=z(p), z'-z'(p)

An analogous procedure with the variable z(p) leads

correspond to Eqs.(4-5)

(7a)

(7b)

to the following relations which

z = _(_)+ 5_ (8a)

= z;(plp' + }-_pp(-_)p,2 (Sb)

The counterparts of relations (6) are:

z'(p) + Zp(p)p' + &'= 0 (9a)

&'= A[zp(_)p'] + (_pp(_)]A(p '2) (9b)

where we have used the notation:

p---p(z), p'=p'(z) (9c)

The "effective p(z) approximation" used by previous authors neglects both terms _ and t_

in (4) and (8a) which become

p=p_(p)], z= z[-fi(z)] (lOa)

Since in these relations p and z are arbitrary, we can choose

p=_(z) (10b)

Then, the second of (lOa) implies that

z=z(p) (10c)

Relations (10b,c) imply that functions _(x) and p(x) are inverse of each other, a property

that is fulfilled only within the approximation used above. Relations (10) are implicit in

the work of de Szoeke and Bennett (1993) and frequently used by several authors: for

example, Eq.(14) of Gent et al. (1995), Eq.(4) of Treguier et al. (1997) and Eqs.(B.4),

(B.8) and (B.12) of Smith (1999).

Consider the effect of retaining terms up to O(p') and O(z'). Since Eqs.(4) and (Sa) do
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not contain such terms, relations (10) remain unchangedwhile Equations (6a) and (9a)

become:

p'(z) + 7z(Z)Z'(p)= 0 (11a)

z'(p) + Zp(p)p'(z)= 0 (llb)

which proves that

pz(Z)Zp(p) = 1 (llc)

This relation becomes an identity when one neglects the random nature of p(z. Relation

(llc) is frequently used and relations (1 l a,b) were employed, for example, by Treguier et

al. (1997) and Rix and Willebrand (1996).

If we now account for terms O(p '2) and O(z'2), in lieu of relations (10a,b), Eqs.(4) and

(8a) yield:

p--- _[_(p)] = _ (12a)

z--_[_(z)] = 5_ (12b)

where O_ and _ are given by expressions (5) and (8b) with (10b,c). Furthermore, using

Eqs.(10) and (11), we obtain:

= Pz _ (12c)

We also write explicitly the second-order approximation in Eqs.(6a) and (9a). They are:

p'(z) + pz(Z)z'(p) = - 5p' = - pz(Z)&' (13a)

where

_p'= A[pz(Z)z'(p)] + i_zz(z)A[z'(p)2] (13b)

&'= A[z;(p)p'(z)] + (Zpp(p)A[p'(z) 2] (13c)

where (10b,c) are assumed. Relations (12)-(13) have never been considered before and yet

they are key to obtain the correct transformation from isopycnal to level coordinates.

Ill. Velocity and tra_er fields in isopycnal and level coordinates.

Due to the random nature of the functions p(z) and z(p), the transformation of

random fields like velocity and tracer from isopycnal to level coordinates is far from trivial.



To begin with, we split the fields into mean and fluctuating parts; in the caseof a 3D

velocity field v, we write

level:

isopycnal:

An overbar representsaverage in level

v(z) = V(z)+ v'(z)

,,(p) = 7,(p)+ v"(p)

coordinates,

(14a)

(]4b)

and a tilde represents average in

isopycnal coordinates; similarly, the fluctuating components are denoted by a prime (') in

level coordinates and by a double prime (") in isopycnal coordinates. For z(p), we use

Eq.(lb) instead of (14b) since the only meaningful average is at fixed p and thus there is no

need to distinguish between a bar and a tilde. The exact relation between the fields in the

two coordinate system is written as

v(z) = v[p(z)] (15)

Let us substitute in (15) the decomposition (la) for p(z) and let us expand the right hand

side in power series in p'(z). For the analysis that follows we retain only the zeroth and

first powers in p'(z). We have

v(z) = v[p(z)] + Vp[p(z)]p'(z) (16a)

Substituting Eq.(14b) and separating mean and fluctuating parts, we obtain

_(z) = _[p(z)] + Vp[p(z)]p'(z) (16b)

v'(z) = v"[p(z)] + _p[p(z)]p'(z) + A{v;[p(z)]p'(z)} (16c)

where

_[_(z)] - _(P) [p=_(z)

v"_(z)] - v"(P) [p=_(z)

In analogy with (15), we have the relation

v(p) = _[z(p)]

Using (14b) and expanding in powers of z'(p), we obtain

_(p) = v-l_(p)] + _,'z[_(p)]z'(p)

¢,(p) = ¢[_(p)] + _[_(p)]z'(p) + _{¢z[_(p)lz'(p)}

(16d)

(16e)

(17)

(18a)

(lab)



Notice further that we limit ourselvesto terms O(p') and O(f'2), where f' is any other

fluctuating variable. Thus, when we average bilinear terms in the fluctuations, as in

Eqs.(16b) and (18a), the difference between averages in isopycnal and level coordinates is

negligible provided z-=-_(p) or p--p(z) since it entails higher order fluctuations. Thus,

Eq.(18a) can be rewritten as follows:

= +

However, even within this approximation, we must

(18c)

distinguish between the two

fluctuations v'(z) and v"(p), Eqs.(16c) and (18b). Analogous relations can be obtained for

the tracer fields r(z) and r(p): they can be obtained by substituting

wr (18d)

in Eqs.(16) and (18).

IV. Tracer field. Level Coordinates. Model Independent Result

When dealing with the equation for the mean tracer field 7 in level coordinates (V is
3

the 3D gradient operator and v=u,w),

0t7 + _.Y 7 + Sg = 0 (19a)
3

one must model the subgrid term (V_--Vn is the two dimensional gradient)

Sg = v.-r7_7 ' = u.-rTg7 + w-r7r (195)
3 Z

Due to the fact that it is physically easier to interpret and model variables in isopycnal

coordinates, we shall first express Sg in terms of correlation functions in such coordinates

and then transform the result to level coordinates. The first step is the substitution of

Eq.(16c) and the analogous relation for r'(z) (obtained by substituting v-,r in 16c), into

Eq.(19b). Since in isopycnal coordinates we only consider horizontal components of the

velocity field, that is, u(p), we need to eliminate the vertical components of v(z). To this

end, we use the continuity equation for v'(z) which yields

w'(z) = v.f z u'(z,)dz, (20a)
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Transformingthe variablesof integration sothat z,=_(x), weobtain

_(z) ,
w'(z) = - V.]0 u [_(x)] Zp(X) dx (20b)

Substituting the operator V (-VH) using the relation (Vp is the gradient at fixed p)

V = Vp + (Yp)_p (21a)

we obtain

where

so that

w'(z) = - _z(Z)-lu'(z).V_(z)+ 6w'(z)

6w'(z) =-/_(Z)Vx.U'[_(x)] {_z[/(x)]}-ldx

(21b)

(21c)

_! . --

"_z (z) =-Vp u' -U'pz.Vp(pz )-1 (21d)

Let us notice that in Eqs.(20b) and (21c) we consider u' and Pz to be functions of p whereas

initially in Eqs.(14a) and (la) they were defined as functions of z. The change of the

independent variables is carried out via the substitution z=_(p). Analogously, even though

the field v" is initially defined in (14b) as a function of p, in (16c) we express v" in terms of

z via the substitution p=p(z). Actually, the detailed specifications shown in Eqs.(16c) and

(21) are not necessary; they can be easily reconstructed since the choices of the independent

variables are unique. As we discussed earlier, with accuracy up to the second order in the

fluctuating fields, the average of the bilinear functions of fluctuating fields does not depend

on which independent variable one chooses, p or z. Thus, for sake of simplicity, we shall

frequently omit the arguments of the functions and use a overbar instead of a tilde. With

this clarifications, we substitute Eqs.(21) into Eq.(19b) and obtain

- o _--_, (22)s_= pzVp.(-e-7/-_z)+ _, ,

After substituting Eq.(21c), one observes the following:

1) in the first term there are only one-point correlation functions whereas in the second

term there two--point correlations functions,

2) in the first and second term there are different integration and differentiation processes



whoserelative importance can beestimated by usingcharacteristic horizontal and vertical

(more accurately, isopycnal and diapycnal) length scales L and H, as well as the

characteristic diapycnal depth of the correlation, b'H. The experimental results of Gargett

et al. (1981) show that 6H is of the order of tens of meters which is considerably smaller

than H>103meters. In this way, we obtain that the ratio of the second to the first term in

(22) is of order 6H/H and we can neglect it. Thus, we retain only the first term in (22),

Sg = -pzVp. (-_-_/-pz ) (23)

Eq.(23) can also be derived in a different way. Multiply (21b) by r', average and neglect

the term _ in accordance with what we have just discussed. As a result, we obtain

_z_-7 + h-7. v_ = 0 (24)

Using (24) in Eq.(19b), we derive (23). We further notice that (24) also implies that the

subgrid tracer flux _-P=(h-_, _rTr) is directed along isopycnal surfaces. An similar

conclusion for the density flux can be obtained from (21b):

_z_-7 + _.v_ = o (25)

Eqs.(24)-(25) express one of the basic facts of physical oceanography, namely that mixing

in the stably stratified ocean occurs mostly along isopycnal surfaces.

Next, we use (16c) and its analog for the field T, to express u' and 7-' in Eq.(23) in

terms of u" and 7". This yields:

=- 11" !1 1 7" 7
St Pzl_p "[( +'pP)( +_pP)/_z] (26)

which we expand as a power series in p':

where:

Sg=S o+ S1 +'" (27)

s o= _zVp(_-F/_z) (28a)

To first order in O(p'), we further have:

S = S + S (28b)
1 1 1

$

S, = "pzVp_ p(p) "u"(p) p' /-pz ] (28c)
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S, = -PzVp"_p(P)_/-Pz] (28d)

The last term is due to the correlation betweenthe density and the tracer fields which

interact indirectly through the velocity field. On that basis,wesuggestthat to order O(p'),

this term may beneglected

S _0
1

Next, we transform S . It is convenient to introduce the velocity (see Eq.lOa of IV)
1

ul ---- = (Fu-")z

Since at the bottom z=-H, u" vanishes, we have

Z

_-Pr/Pz = - ]-H ul(z')dz' = I

Using Eqs.(27), (28) and (30), S t expressed in isopycnal coordinates is:

(28e)

(29)

(30)

S/= SO + pzVp.(TpI) (31)

One more step is needed to write (31) explicitly in terms of level coordinates. This is

accomplished by the substitutions

Thus, Eq.(31) takes the form

 z az, z (32)

where

S/=w7 1 Z + (Tz/pz) u ._ + S, + S (33a)
1 0

w,= V. I, S, = I. 0z[1-z(Lp-Lr)]._ _.

Lp= - pzlVp, LT= -- p_lVT

where L are density and tracer surfaces slopes. The variables u, I and S
/9,7" 1 0

(29), (30) and (28a). One must model two variables

(33c)

(33d)

are given by

which we consider next.

ul, S0 (34)

V. Interpretation of u
1

Following Andrews and McIntyre (1976) and Andrews et al. (1987), the transport

10



equationfor the meandensity _ is givenby:

+ + z

where

u + =-V_zA ,

+ E z = 0 (35a)

w+=V •A, A=(_z)-_ h-_

2 = h. Vp + _-r_,

(35b)

(35c)

Consider also the equation for the density variance in the adiabatic case,

0tp'2 + 2h-r_.Vp + 2_rp-r pz + u.V(p r2) + W0z(p'2 ) + 0z(W--_)+ V.h-_ '2 = 0

(35d)

If we neglect terms O(_'2), only the second and third term in (35d) survive, which leads to

E =0 (35e)

Eq.(25) which in turn implies that

Consequently, Eq.(35a) becomes

+ + z = 0 (35f)

where u + can now be interpreted as a density bolus velocity in level coordinates. We can

further notice that using (29), (35b) and (18b) we obtain

u - u + 0 "u _,2/-=2_ (36a)
1 = z ( z p /Pz)

that is, the difference is of higher order than u and u+ both of which are O(p'). Since
1

Eq.(33) and (35f) are also correct up to O(p'), in (29) we can substitute

u"_u' (36b)

which implies that in (33a) we can substitute

u = u + (36c)
1

Thus, the density bolus velocity in level coordinates u+ coincides with u defined by (29).
1

VI. Tracer subgrid in Level Coordinates

Eq.(33) contains two functions that need modeling, a velocity u and a diffusion-like
1

term S. In paper IV, we modeled u and its form is given by Eq.(26). Before substituting it
0 1

into (33), we must transform it to level coordinates. Using Eq.(32), it becomes
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u = n _z(_zl_) + hff-'Vf (37a)
1

where we have taken into account that in the case of coarse resolution O-GCMs, we can

neglect _' compared to f, as well as the fact that f=0. To derive So, we first recall that the

general result (33) is valid to second order in the fluctuating fields and to first order in p'.

Within this accuracy, we can use Eq.(27) of IV which we compare with Eq.(28a) to

conclude that"

S = R (37b)0

where, within the same approximation, R which is given by Eqs.(8a) and (28) of IV,

acquires the following form

R = - -fiz Vp'(Ic'ZoVpr)_ (37c)

where 7- is the thickness weighted average in isopycnal coordinates, see Eq.(4a) of IV, which

consistently with the approximation we have used, can be substituted with -_ that is,

R = R=- Pz Vp' (_ZpYpr)

Transforming this expression to level coordinates using Eq.(32), we obtain

S=R=_ 0 _KO_ 07

o _xit ij j _j

n-lK 0 =ij - PiajPi 2

where (pi--Op/ Oxi)

(37d)

(37e)

(37f)

Thus, substituting Eqs.(37a,d,e) into (33a), we can present result in two alternatives forms:

(N-p,7-r):

1) first forth:

S_(r) = w17-z + (rz/pz) ul.V p + S, + R

u = S;0z(pz'Vp) + M-'Vf, w = V.I
1 1

S, = I. Oz[Tz(Lp-Lr) ]

Lp = - r-lVr= - Pz IVp' Lr z

Z

I = - I-H ul(z')dz'

0 IK Or
R = - -Oxi, ij ''-)axj

(38a)

(38b)

(38c)

(38d)

(38e)

(38f)
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tc-'Kij -- 5ij -(1-e)piPjP(¢2 (38g)

where we have added the diapycnal component with diffusivity _c which is the vertical

diffusivity. The first two terms in (38a) cannot be interpreted as an advection, as in the

Gent and McWilliams model (1990, GM). However, we can rearrange (33a) to exhibit such

term. To this end, we rewrite (37d) as follows:

R = R,-_pz(Vppzl).Vpr = R, + ul .Vpr-af-lVf.Vpr (39a)

where

R_ = -- Vp" ( _Vp _) I Oxi(_piPjPk 2 ) (39b)

Using (21a), we obtain:

2) second form: v = (u,w)

St(r ) = vl .V3r + S, + R,- _f-'Vf. (V+Lp0z) r (40a)

R, =-(V+Lp0z)._(V+Lp0z)r a _2aT
- Oxi(CgpiPjP k %) (40b)

The expressions for ul, S,, w and I are the same as in Eqs.(38).1

Since the first term in (40a) looks like an advection term whereas the first term in

(38a) does not, two questions arise: first, is a division of the level subgrid in advective plus

diffusive parts unique representing a physical reality or is just a formal mathematical

reformulation?, second, if the answer is positive, is the first term in (40a) the physical

advection term? We discuss this problem in the next section

3) the GM model

If we take a constant diffusivity _ as GM did, we obtain from (38)

St(r ) = S/(GM,r)+ OOz [rzLp" (Lp-L r)] (40C)

which still does not coincide with the GM model. Only if we furher take v=p, will the last

term vanish and the two models coincide.

VII. Diffusion and Advection in Subgfid Modeling

To discuss the problems just mentioned, we recall that following Taylor's (1915)

13



ideas,Rhinesand Holland (1979,Eqs.4-9a) haveshownthat equation (19a) (7=-r)
Dr O

= --_i ( •m vi7) = - se (41a)

can be written quite generally as:

vi-_-r - - Dij _j_., Sg = - _xi(Dij 0rJ _j) (41b)

where the diffusivity Dij is a second-order tensor the orientation of which is unknown. As

stressed by Muller and Holloway (1989), Greatbatch (1998), the principal axes may be

taken to be diagonal in level, isopycnals or any other coordinate systems. For a number of

years, the tensor was assumed to be diagonal in the (xyz) space giving rise to

horizontal/vertical diffusivities. Redi (1982) suggested that it is diagonal in the

isopycnal/diapycnal system and since mesoscale mixing occur along isopycnals, the tensor

has ever since been taken diagonal in that system and thus one refers to diapycnal and

isopycnal diffusivities. Suppose that Dij is a symmetric tensor and that we take it equal to

Redi's Kij , Eq.(38g):

D..=K.. (41c)1j lj

where

Kij = n(6ij-piPjp_2 + epiPjp_¢2 ) = KP.,j + eKij(D ) (41d)

The first two terms represent the isopycnal contribution since Kijpj-0,° _ while the last term

represents the diapycnal contribution since Kij(D)pj=Pi. The question is: can the velocity

v ++=, _jKij (41e)

of paper IV? Thebe interpreted as the bolus velocity ++" ++ ++'v i tu i ,w i ), see Eq.(lb)

horizontal and vertical components are:

- _z(_pzlVp) +..., - V. (tCpz'Vp) (41f)

which have the same functional dependence of the GM model bolus velocity but with the

difference that both velocities (41f) are either from low to high ¶ or vice-versa, whereas in

the GM model the horizontal part is from low to high ¶ while the vertical is from high to

low ¶. In more mathematical terms, the true bolus velocity is divergence free (by

14



construction)while (41f) is not. Next, wewrite Dij asthe sumof a symmetric part, ¶ij

an antisymmetric part aij (Plumb, 1979):

Thus,
Dij= nij+ aij (42a)

and

vi----_=__;ij0_j+ r_xjai j 0- _xj( raij ) (425)

Contrary to (41e), we now consider 0/0xj of aij as a possible candidate for the advective

velocity v ++
1

v++= 0
, _xjaij (42c)

Since aij=-aji , it follows that the last term in (42b) is such that

 xi xj/ ooraij) = - _xi-0xj(raji ) = 0 (42d)

and thus it does not contribute to Sg in (41a). By the same token, it follows that v ++ is
1

0 v++ = 0 (42e)
_x i ,

divergence free

and so going back to (41b) we have

Sg v ++0r Or (42f)

This shows that the symmetric part is a diffusion process while the antisymmetric part

gives rise to an advection velocity. Thus, if Dij is known somehow, the decomposition of Sg

into advective and diffusive terms is unique since for any tensor the decomposition in

symmetric and antisymmetric parts is unique. If, on the contrary, Dij is not known but Sg

is, as in our case where we have constructed Eqs.(38) and (40), the uniqueness of the

decomposition of Sg is predicated on Dij depending only on p but not on r. First, let us use

(42a) into (41b). We obtain (where commas indicated derivatives):

Sg = - t_ijr,i j - (_ij,i + aij,i)r,j (42g)

By equating the terms in the known Sg which contain the second derivatives of r with the

first term in (42g), one can construct the tensor nij" To obtain the last two term in (42f),
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weequatethem with the correspondingterms in S, which contain the first derivative of 7-.

This will yield aij,i. In summary, by knowing S, we canuniquely reconstruct from it both

the tensornij as well asaij,i which is nothing but - v_ + as Eq.(42c)shows.Applying thisj '

methodusingthe specificform (38) and/or (40), we obtain the following results:

St(r) = Sdiff (r) + Sadv(r)

O _ 0%
Sdiff(r) ---0xi( ij %)

Sadv(r) = v ++0r
i -_i

v++ 0 a

i = _xj ij

A
_3

u++ =
1 1

Vu ++ + w ++ =0
1

_;ij = Kij + Aij

0,

= A3_ = - _Io? (_=1,2)

A33 : flZ 1 I" Vp

where:

(43a)

(43b)

(43c)

(43d)

(44a)

(44b)

(44c)

(44d)

(44e)

(44f)

Thus, we reach the following conclusions: first, separation (43a) in terms of advective and

diffusive components is unique; second, the velocity v in the first term in (40a) is not the
z

physically correct bolus velocity since it is twice as large as the real (advective) bolus

(u ++ w++_ Eqs.(43a)-(44a); third, the diffusion tensor _;ij is not only the Redivelocity , i ' i J'

Kij, as assumed thus far, since it contains the additional term Aij. Since the velocity u 1

equal the density bolus velocity, Eq.(36c), it may at first seem surprising that in level

coordinates

instead of

u++(tracer) = ½u+(thickness) (44g)
l

u++(tracer) = u+(thickness) (44h)
l

We now show that (44g) and (44h) represent two different interpretations of the physical
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contentof the density subgrid. If wesubstitute r-_p in (43) we obtain

St_p ) = Sdiff(p ) + Sadv(P)

0

Sdiff(P) =- _xi(_iJ _j)' Sadv(P) = V_+_l (44i)

Using now (43d) and (44a-f), we obtain:

Sdiff(p ) = Sadv(P) = ½(ul.V p + Wlpz) (44j)

S_p) = ul.V p + wlp z (44k)

Eq.(44j) can be interpreted in only one way: density subgrid is the sum of advection plus

diffusion which contribute an equal amount. On the other hand, (44k) can be interpreted in

two ways: either as the sum of two equal terms or, as the absence of diffusion and full

contribution of advection. The .first choice implies (_4h) while the second choice implies

(449). Thus, we conclude that while both (44g) and (44h) are acceptable, the common

interpretation is that for density there is no diffusion and thus (44g) is to be preferred.

Stated differently, the standard model that:

u ++ u +Sdiff(p)=0, i =

is untenable since the correct relations are either

Sdiff(p)=0, u++= }u +

or:

u ++ u +
Sdiff(p ) = Sadv(P)¢0, i =

The question still remains as to why for density, the separation of advective from

diffusive terms is not unique. The answer is that in the proof of uniqueness given above, the

critical condition was that Dij be independent of r which is no longer true when r_p since

Eq.(44c-f) show that Dij via _;ij depends on p.

VIII. Present and previous models

In principle, there are four bolus velocities: for density and tracer and in level and

isopycnal coordinates, that is,

17



density: u+(level), u*(iso)

tracer: u++(level) u (iso)
1

In terms of these velocities, the subgrid tracer functions Stj are defined as:

Sg = u ++.y7 + w++7 + R(level)
l l Z

Sl=u .Vp_+R(iso)

In all previous models it was assumed that all four bolus velocities are identical:

u (iso)=u (iso)=u (level)=u++(level)

whereas we have shown that"

u (iso) = u (iso)

u++(level) = _u +(level)

(45a)

(45b)

(46a)

(46b)

(46c)

(47a)

(47b)

(47c)u (iso) = u+(level) + u
2

where u is given by Eq.(24) of IV. To understand how the second equality in (46c) was
2

arrived at, we begin with the equation for the thickness Zp=OZ/Op whose mean value in

isopycnal coordinates satisfies the equation:

Ot_ p + Vp.[(_ + u*)_p] = 0 (48a)

where

U - U"Z v/Z

p" p

is the thickness bolus velocity in isopycnal coordinates. Gent and al.

(48b)

(1995) transformed

(48a) to level coordinates to obtain

Otp + (u + u )V'p + (w + w )Ozp = 0 (49a)

Within the O(p') accuracy, in (49a) one takes p=-p, a variable for which we have already

given the transport equation (35f) which we reproduce here for ease of comparison:

Otp + (u+u+)._ + (w+w+)p z = 0

By comparing (49a,b), one can only conclude that

U* U+

* __ W+_+w =w+

(49b)

(49c)
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whereasin the GM model

* u+ (49d)U :

which is the assumption we referred to. Thus, we see that (49d) is due to the lack of

differentiation between u and _ [in our model, substituting Eqs.(35b), (48b) and (lla) into

(18a), one obtains the first of (49c)].

To understand whence the last assumption (46c) in the GM model arises, we recall

that GM heuristically extended (49a) to the case of a tracer by adding a diffusion term R

thus obtaining (see also Gent et al., 1995)

0t7 + u. V_ + w r z + S / = 0 (50a)

St(GM ) = u .Y-_ + w r z + R (50b)

Eq.(50b) is consistent with (46c) only if ones makes the assumption

u++=u (50c)
1

IX. Conclusions.

The goal of this paper was to improve on the "effective p(z) approximation",

employed thus far in all considerations, since it neglects the intrinsic random nature of the

function p(z). We began by considering the transformation of the mean and fluctuating

parts of the different fields of interest from isopycnal to level coordinates. For the velocity

field, the results are presented in Eqs.(16) and (18) which are accurate up to the

second-order in the fluctuating fields. Analogous transformations for the tracer fields can

be obtained via the substitution v-_r. Using these results, we compute the subgrid term S_

that appears in Equation (19a) for the mean tracer _ in level coordinates. The main results

are ezpressed by Eqs.(38) and (40) and/or (_3)-(_4). A considerable simplification of the

problem was achieved thanks to the experimental results by Gargett et al. (1981) that

showed that the vertical correlation length scale for ocean turbulence (below the mixed

layer) is much smaller than the characteristic vertical extent, H. As we have shown, this

feature leads to Eqs.(24,25) which in turn imply that ocean mixing in stably stratified
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regionsoccursmainly along isopycnals.On this basiswe derivedour main resultswhich are

quite different from the GM model, Eq.(50b).
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